
  

 

Abstract— This paper presents the implementation of a state-

of-the-art Simultaneous Localization and Mapping (SLAM) 

model, KISS-ICP, on a wheeled robot developed in the 

Robomechanics Lab at Carnegie Mellon University [1]. In this 

paper, we introduce an adaptive speed system designed to 

optimize both mapping efficiency and accuracy in previously 

unexplored environments. The focus of this project is to assess 

mapping accuracy at various robot speeds in a test 

environment, where generated maps are compared against a 

ground truth map. Future efforts will leverage these results to 

develop an adaptive speed algorithm to enhance mapping 

accuracy without sacrificing accuracy through a developed 

adaptive speed algorithm. Additionally, plans include deploying 

the robot in new, unstructured environments to validate its 

performance. 

I. INTRODUCTION 

Simultaneous Localization and Mapping (SLAM) is a 

fundamental tool in robotics that addresses critical tasks 

such as autonomous navigation, environmental monitoring, 

and exploration. Despite its potential and wide range of 

applications, challenges persist in improving its robustness, 

computational efficiency, and adaptability in dynamic and 

unstructured environments while maintaining accuracy. 
 

This paper presents a novel approach to SLAM that 

evaluates the concept of adaptive speed control based on 

environmental complexity. Through the implementation of 

the state-of-the-art KISS-ICP (Keep it Simple and 

Straightforward Iterative Closest Point) algorithm on a 

wheeled robot platform, we aim to demonstrate that robotics 

tasks that leverage SLAM can be significantly optimized 

through the use of the adaptive speed method [2]. 
 

Our key contributions include: 
 

1. Implementation of KISS-ICP on a wheeled robot 

platform. 

2. Development of a basis for adaptive speed control by 

comparing point cloud density at 8 different speeds. 

3. Formulate future research methodology for a robust 

adaptive speed control autonomy stack. 

II. BACKGROUND 

With recent advancements in SLAM, the efficiency 

and robustness of mapping and surveillance of previously 

unknown areas have improved significantly. Among these, 

the KISS-ICP algorithm, introduced in [2], represents a 

minimalistic LiDAR-based approach that leverages the 

iterative closest point (ICP) algorithm and an effective 

downsampling strategy to achieve accurate robot pose 

estimation with minimal parameter tuning [3].  
 

While adaptive SLAM techniques have been explored in 

diverse contexts, direct application of adaptive speed 

control, leveraging point cloud density and mapping 

accuracy, is a relatively unexplored area. Cosgun introduced 

the concept of speed maps to set static and dynamic speed 

limits for mobile robots based on environmental context and 

human presence [8]. The speed maps allowed robots to 

adjust speed dynamically to ensure safe and optimized 

navigation through environments. Specifically, potential 

collisions were reduced by moving faster in open areas and 

slower in confined or human-populated areas on the map. 

Building on this foundation, researchers aim to refine 

adaptive speed control strategies by integrating more 

nuanced environmental data and dynamic real-time 

feedback, opening up further possibilities for improving 

efficiency and safety. To improve upon the existing speed 

maps, the adaptive speed control method initialized with 

training information about the environment. This approach 

has the potential to bring significant improvements in field 

robotics, enabling more effective and reliable autonomous 

navigation in dynamic and challenging environments. 

III. METHODS 

1. Project Methodology 

Within the scope of the project, the methodology provided 

proof of concept for adaptive speed control. The motivation 

behind the proof of concept was to provide a metric to 

indicate the correlation between point cloud accuracy and 

robot speed. The proceeding sub-sections described the 

execution of the methodology. 

1A. Proof of Concept Environment Setup 

The testing environment was a large, enclosed 

space with obstacles including stacked foam rectangles and 

cardboard boxes, shown in Fig. 1. The large obstacles were 

utilized to display clear, static objects within the 3D 

reconstructed point cloud. The robot moved along a straight 

path with the starting and end points defined by green mats. 

This setup ensured a controlled environment where the 

effects of varying speeds and obstacle density on the LiDAR 

data could be effectively observed and analyzed. 

 

Adaptive Speed Optimization for SLAM Using KISS-ICP on a 

Rover Robot 

Andres Castrillon, David Seong, Dylan Leong 



  

 
 

Figure 1. Proof of concept environment setup. 

1B. Varying Speed Experiments 

Before experimentation, the hardware of the rover 

robot with an attached LiDAR was verified for any possible 

issues. The path of the robot was hard-coded to travel at a 

constant speed for a period of time in seconds. The robot 

was set to 8 different speeds for a total of 9 trials. The 

additional trial was included for evaluation of the robot at 

the highest speed. The LiDAR data was recorded into 

rosbags with the Ouster SDK source code to be processed by 

KISS-ICP. This ensured consistency across all trials and 

provided high-quality data for subsequent analysis and 

validation of the algorithm's performance. 

1C. CloudCompare Software 

 After each trial, the map generated for the room using 

KISS-ICP was exported as a .ply file. Maps were then 

compared two at a time using CloudCompare [7]. In this 

software, the two point-clouds were imported and registered 

to ensure the two maps were aligned. Then, a point-to-point 

comparison was run to calculate the mean distance and 

standard deviation between the two clouds, which provides 

insight into how different the two maps are. A visual 

example of how two point-cloud maps are aligned on 

CloudCompare is shown in Fig. 2. 

 

 
 

 

Figure 2. Point-to-point comparison between two maps using 

CloudCompare. 

2. Research Methodology 

The end goal of the research is to develop an autonomous 

stack for adaptive speed control. However, the project 

primarily focused on the proof of concept to verify the 

necessity of the method. The future methodology consists of 

a training phase, where speed parameters are tuned, and a 

testing phase, used to validate the performance of the model. 

These phases are further discussed in detail in the following 

sub-sections. 

2A. Environment Setup 

The testing environment will consist of an open space 

enclosing 5 obstacles (e.g. traffic cones). The mapping path 

for the robot will be designed to start at an origin mark, go 

around the obstacles, and then return to the origin. The robot 

will use GPS data to ensure it remains on track. Fig. 3 

illustrates the intended testing environment and path of the 

robot. As can be seen, the obstacles are clumped together to 

create a region in the robot's path that is more densely 

packed than the rest. 

 

 
 

Figure 3. Environment setup and intended path of the robot. 
 



  

2B. Initial Ground Truth Map 

In the first run, the rover will follow its path at 50% of its 

maximum speed to produce a “ground truth” map of its 

environment. Given the precision of the Ouster sensor and 

the reliability of KISS-ICP, it is assumed the mapping 

results at this speed will be representative of the ground truth 

[2][4]. 

2C. Adaptive Speed Training 

At this stage, the rover will complete the path again in the 

same environment a series of times, however, now, the 

speed at which the robot is moving will vary throughout the 

path based on the density of obstacles detected around the 

robot. When the amount of occupied space around the robot 

exceeds a set threshold, the robot’s speed will be adjusted to 

a ‘slow speed’, to ensure detailed mapping of dense areas. 

Meanwhile, if the occupancy around the robot is below the 

threshold, the robot’s speed will be set to a ‘fast speed’, to 

reduce mapping time.  
 

 

At the end of each run, the map for the trial will be 

compared to the ground truth map of the environment. Based 

on this comparison, the ‘slow speed’ and ‘fast speed’ 

velocities will be tuned to improve the mapping accuracy 

or/and speed for the next trial. This tuning process will be 

repeated until the robot reaches the desired accuracy under 

the expected time. Then, the ‘slow speed’ and ‘fast speed’ 

values that lead to the best performance will be saved as the 

parameters for the trained model. 
 

2D. Adaptive Speed Testing 

 For the testing phase, the obstacles in the environment are 

rearranged to new positions. Then, a new ground truth map 

is developed following the methodology described in 

Section 2.B.  
 

Now, the trained model will be tested in the new 

environment by following the same trajectory as before, but 

this time, varying the speed throughout the path according to 

the trained ‘slow speed’ and ‘fast speed’. An example of 

what the updated environment and the expected robot path 

could look like with the adaptive speed is shown in Fig. 4. 

 

 
 

Figure 4. Updated environment used for validation. 

The map generated from this test trial will be compared to 

the ground truth that was created for the updated 

environment. The overall performance of the model will 

depend on the accuracy of the generated map and time 

reduction. Once validation of the method has been 

completed in a controlled environment, the adaptive speed 

control pipeline will be experimented in outdoor 

environments.  

2C. Summary of Research Methodology 

 Once again, the research methodology presented in 

Section 2 is the plan for implementing adaptive SLAM in 

future experiments based on the results derived from this 

paper. A high level overview of the training and testing steps 

proposed is shown in Fig. 5.  

 

 
 

Figure 5. Flow chart overview of training and testing steps for the end goal 

research. 
 

Currently, the plan is to approach the tuning process 

manually while the trials are performed. However, 

depending on the complexity of the tuning process or how 

many trials are needed to achieve adequate performance 

from the algorithm, it may be beneficial to automate the 

tuning process through simulation and optimization. 

IV. GITHUB 

The implementation code, including the KISS-ICP 

integration, adaptive speed control algorithm, and data 

processing scripts, is available at [5]. 

V. REVIEW OF THE COLLECTED DATA 

Before integrating KISS-ICP into the complete pipeline, 

the validity of the method was confirmed with visualization 

of datasets. The Ouster OS0 collected data in the format of 

rosbags. Specifically, the data collected in the rosbags were 

IMU, LiDAR, and metadata packets. For experimentation, a 



  

simple path from ANSYS Hall to the gazebo in Schenley 

Park and back were recorded into two separate datasets. 

Figure 6 displayed a single time step from the LiDAR data 

around the location of Scaife Hall. The datasets will be 

processed into our pipeline in future steps. 

 

 
 

Figure 6. Screenshot of a single time step from LiDAR data. 

VI. EXPLANATION OF EXPERIMENTS, RELEVANCE 

AND DISCUSSION OF ANY IMPORTANT 

IMPLEMENTATION DETAILS 

 As stated previously, validation of the KISS-ICP method 

was necessary before integration into the complete pipeline. 

The MulRan parking lot dataset was visualized with KISS-

ICP and results were recorded [6]. The point cloud 

visualization of the MulRan dataset after a substantial 

number of timesteps was shown in Figure 7. 

 

 
 

Figure 7. Screenshot of the MulRan dataset visualized with KISS-ICP 
 

Next, KISS-ICP will be tested on collected rosbags. 

This proceeding step began the utilization of ROS1. The 

eventual goal is the integration of KISS-ICP into a ROS1 

autonomy stack. Specifically, a rosbag will be processed 

with the ouster-ros package and published to the point2 

topic. The KISS-ICP package will then subscribe to the 

point2 topic to collect results and formulate a point cloud 

visualization. Figure 8 gives the rqt graph of the ouster-ros 

package for context. 

 

 
 

Figure 8. Screenshot of a single time step from LiDAR data. 

VII. EXPERIMENT RESULTS AND SIGNIFICANCE 

A. LiDAR Validation 

 Data collection experiments were conducted near Scaife 

Hall to demonstrate LiDAR's capability to capture point 

cloud data in structured, natural and dynamic environments. 

These initial experiments focused on assessing the LiDAR’s 

performance and the reliability of the supporting setup. 

 

 

Figure 9. Point Cloud Generated Using Rviz. 

 

Key Observations: 
 

1. Depth Data Collection: The LiDAR successfully captures 

both static and dynamic objects and generates detailed 

point clouds. While the initial results are promising, 

additional experiments are required to explore its 

performance across various resolutions and settings to 

optimize the data collection process 

2. Hardware: A 29.6V 4500 mAh Lithium-ion battery was 

used to power the LiDAR during the experiments. The 

battery provided sufficient power through the three 

experiments, ensuring stable operation. This reliability 

ensures a smooth execution in our future experiments. 

B. Cloud Compare Results from Trials 

In total, 9 trials were performed ranging from speed 

settings of 0.4 to 1.8. These values represent the speed 

setting on the robot, additional testing is required to 

determine how these values exactly translate to units of 

speed (e.g. meters per second). Two trials were performed at 

the 1.8 setting, with one of them (Trial 8) being labeled as an 

outlier due to the unexpectedly high difference in mean 

distance error. 
 

Trial 1 was treated as the growth-truth of the map 

as it was performed at the slowest speed and is, thus, 



  

assumed to have had the highest accuracy. The data 

collected from the remaining trials were compared to the 

map generated in Trial 1 using Cloud Compare. The 

computed mean distance error and standard deviation 

between a map of a given trial and Trial 1’s map are 

displayed in Table I. 

TABLE I.            Key results collected for trials compared using 

CloudCompare Softtware 

Trial Speed 

Setting 

Mean Distance  Standard 

Deviation 

1 0.4 N/A N/A 

2 0.6 0.036 0.509 

3 0.8 0.036 0.059 

4 1.0 0.037 0.259 

5 1.2 0.040 0.177 

6 1.4 0.0438 0.445 

7 1.6 0.0451 0.302 

8 1.8 0.1528 0.547 

9 1.8 0.0472 0.054 

Mean Distance and Standard deviation are compared to trial 1, which was 

conducted at the lowest tested speed and treated as the ground-truth map. 

 

The mean distance error values presented in the 

above table were plotted against the robot speed in Fig. 9. 

The outlier, Trial 8, was excluded from the graph. A linear 

trendline, with an R2 value of 0.946, was plotted behind the 

data points for a clearer visualization of the observed trend. 

 

 
 

Figure 9. Robot Speed vs. Mean Distance Error. 

VIII. DISCUSSION OF FACED CHALLENGES 

 For the training step, where the ‘slow speed’ and ‘fast 

speed’ parameters are being set, the initial proposal 

suggested conducting only one trial in which the mapping 

accuracy of the robot would be checked real-time every few 

timesteps as the robot is moving. This process would have 

required performing KISS-ICP realtime at a high frequency, 

which could be time consuming and computationally 

expensive. 
 

Instead, the implementation simplified this process 

by comparing maps offline after the robot has completed the 

entire path. This change reduced the overall number of times 

KISS-ICP needed to be performed, and reduced the coding 

complexity of controlling the robot’s speed. 
 

During the implementation of the training step, 

hardware interfacing between the LiDAR and the rover 

hardware and transferring LiDAR specific code to the 

rover’s NUC served as significant challenges. 

 

 
 

Figure 10. Patrick Under Repair after NUC Disconnect Issue. 



  

 

There was an issue where the NUC was unable to 

receive LiDAR data through its ethernet cable, therefore 2 

separate laptops had to be used in the data collection 

process, one for controls and one for data collection. This 

forced one of us to walk alongside the robot, introducing 

false positive points in the dataset. 
 

On the hardware side, the laptop used for the 

rover’s control was often unable to connect to the rover’s 

network in the testing environment. To establish a 

connection, the rover setup often had to be brought outside 

of the lab, then brought back in. Furthermore, when stopping 

at high speeds, the cable that connects the NUC to its motor 

drivers frequently got disconnected. This required a restart 

of the whole system, delaying our data collection process. 
 

From the software configuration issues and 

miscellaneous hardware challenges we encountered, we 

learned that in physical robot implementation projects, it is 

essential to allocate additional time for debugging and setup 

to account for unexpected errors that may impede overall 

progress. 

IX. CONCLUSION AND FUTURE WORK 

A. Interpretation of Results 

Trial 8 being an outlier could be attributed due to 

human error when setting up the experiment. For example, if 

the robot was oriented incorrectly at the beginning, the 

generated would have larger discrepancies. This is further 

supported by the fact that the second trial using the 1.8 speed 

setting (Trial 9) had a mean distance error that met the initial 

expectations. Performing additional trials and at a greater 

number of speed settings would help verify the results in this 

study. 
 

Overall, all the trials performed led to roughly 

accurate maps of the room, based on visual inspection, 

regardless of the speed setting used. This speaks to KISS-

ICPs robustness when it comes to mapping at different 

speeds. However, when the maps collected from the 

different trials were compared to the ‘ground-truth’ map 

(Trial 1’s map), the mean distance error increased as the 

robot speed setting increased. This trend can be observed in 

the  Fig. 9, where the trendline has an R2 value close to 1, 

indicating the relationship appears to be linear. 
 

The trend of map accuracy declining as robot speed 

increases matches the expected trend for the results. One 

possible explanation for the increased error could be related 

to the nature of ICP SLAM algorithms. ICP compares the 

closest points between two frames to keep track of where the 

robot is. A larger speed means there is a greater physical 

transformation between the frames the LiDAR sensor picks 

up. This increased delta means the “closest points” in ICP 

are now further apart compared to a slow moving robot, 

which could lead to a more inaccurate representation of the 

transformation. 
 

The results from this experiment serves as 

validation that the field of robotics would benefit from an 

adaptive-speed SLAM algorithm that is capable of balancing 

the advantages (reduced mapping time) and the tradeoffs 

(lower map accuracy) associated with increasing speed 

during mapping. 

B. Future Work 

With Experiment results clearly demonstrating a 

relationship between speed of the rover and the accuracy of 

the generated, our future work will focus on the following 

areas: 
 

• GPS based path planning: Currently, rover’s path is 

hard coded and tailored to a specific testing 

environment. A GPS based path planning system 

will enable more flexible and efficient testing of the 

algorithm in different environments. 

• Adaptive speed algorithm: An adaptive speed speed 

control algorithm will be implemented where the 

rover adaptively changes its speed according to its 

surrounding point cloud density to optimize its 

mapping process. 

• Field testing: Once an adaptive speed algorithm has 

been developed, it will be tested in various outdoor 

environments to validate its performance. 

• Sensor Fusion: The KISS-ICP algorithm presented 

on this paper relied only on LiDAR data to generate 

the map of the environment. Using additional 

sensors, such as an Inertial Measuring Unit (IMU) 

or wheel encoders, could help provide a more 

accurate estimate of how the robot is moving 

during the mapping process. Therefore, combining 

the LiDAR data with other sensor readings may 

allow for more accurate maps being generated even 

at high speeds.  

X. REFERENCES 

[1] A. Johnson. “Robomechanics Lab.” cmu.edu. Accessed: Oct. 25, 

2024. [Online.] Available: 
https://www.cmu.edu/me/robomechanicslab/ 

[2] I. Vizzo et al. “KISS-ICP: In Defense of Point-to-Point ICP -- Simple, 

Accurate, and Robust Registration If Done the Right Way,” IEEE 

Robotics and Automation Letters, vol. 8, no.2, pp. 1029-1036, Jul. 

2023, doi: 10.48550/arXiv.2209.15397 

[3] P. Besl and N. McKay. A Method for Registration of 3D Shapes. 

IEEE Trans. on Pattern Analalysis and Machine Intelligence 

(TPAMI), 14(2):239–256, 1992. 

[4] Ouster. OS0 Ultra-Wide View High-Resolution Imaging Lidar. 

(2021). Accessed: 11/15/2024. [Online]. Available: 

https://data.ouster.io/downloads/datasheets/datasheet-rev05-v2p1-
os0.pdf 

[5] D. Seong. “david_seong8914/SLAM_project”. Github. 11/15/2024. 

[Online]. Available: 

https://github.com/davidseong8914/SLAM_project  

[6] J. Jeong, Y. Cho, Y. Shin, H. Roh, and A. Kim. Complex urban lidar 

data set. In Proc. of the IEEE Intl. Conf. on Robotics & Automation 

(ICRA), 2018. 

[7] Girardeau-Montaut, Daniel. CloudCompare. [Online]. Available: 

https://www.danielgm.net/cc/  

about:blank


  

[8] A. Cosgun. “Speed Maps: An Application to Guide Robots in Human 

Environments,” in 14th International Workshop on Human-Friendly 

Robotics (HFR), Nov. 2021 [Online]. Available: 
https://arxiv.org/abs/2111.02659  

 

 
  

 

about:blank

